Image Image Image Image Image

© Copyright Piri Technologies 2017

 


Scroll to Top

To Top

Publications

JOURNAL PUBLICATIONS

  1. B.F. Garcia, S. Saraji, “A new insight into the dependence of relaxation time on frequency in viscoelastic surfactant solutions: From experimental to modeling study”, 2018Journal of Colloids and Interface Science, 517, 265-277.
  2. E. Barsotti, S. Saraji, S. Tan, M. Piri, “Capillary Condensation of Binary and Ternary Mixtures of n-Pentane-Isopentane-CO2 in a Nanoporous Medium: An Experimental Study on the Effects of Chemical Composition and Equilibrium”, 2018Langmuir34 (5),1967–1980.
  3. W. Kuang, S. Saraji, M. Piri, “A systematic experimental investigation on the effects of aqueous nanofluids on interfacial properties and their implications for enhanced oil recovery”, 2018Fuel, 220, 849-870.
  4. Javanbakht, G.; Sedghi, M.; Welch, W.; Goual, L.; Hoepfner, M., (2018), “Molecular Polydispersity Improves Prediction of Asphaltene Aggregation”, Journal of Molecular Liquids, 256, 382-394.
  5. Javanbakht, G., Arshadi, M., Qin, T., Goual, L., (2017), “Micro-scale Displacement of NAPL by Surfactant and Microemulsion in Heterogeneous Porous Media”, Advances in Water Resources, 105, 173–187.
  6. Lowry, E., Sedghi, M., Goual, L., (2017), “Polymers for Asphaltene Dispersion: Interaction Mechanisms and Molecular Design Considerations”, Journal of Molecular Liquids, 230, 589–599.
  7. E. Lowry and M. Piri, Effects of chemical and physical heterogeneity on confined phase behavior in nanoporesMicroporous & Mesoporous Materialsaccepted (2017).
  8. Mirchi, S. Saraji, M. Akbarabadi, L. Goual, and M. Piri, A systematic study on the impact of surfactant chain length on dynamic interfacial properties in porous media: implications for enhanced oil recovery, Ind. Eng. Chem. Res56(46): 13677–13695 (2017).
  9. Qin, G. Javanbakht, L. Goual, M. Piri, and B. Towler, Microemulsion-enhanced displacement of oil in porous media containing carbonate cements, Colloids and Surfaces A: Physicochemical and Engineering Aspects,530: 60-71 (2017).
  10. P. Tan and M. Piri, Retrograde behavior revisited: implications for confined fluid phase equilibria in nanopores, Physical Chemistry Chemical Physics,19: 18890-18901 (2017).
  11. Akbarabadi, S. Saraji, M. Piri, D. Georgi, and M. Delshad, Nano-scale experimental investigation of in-situ wettability and spontaneous imbibition in ultra-tight reservoir rocks, Advances in Water Resources,107: 160–79 (2017).
  12. Khishvand, A. H. Alizadeh, I. Oraki Kohshour, M. Piri, and R. S. Prasad, In situ characterization of wettability alteration and displacement mechanisms governing recovery enhancement due to low-salinity waterflooding, Water Resources Research,53, no. 5: 4427–43 (2017).
  13. Akbarabadi, M. Borges, A. Jan, F. Pereira, and M. Piri, On the validation of a compositional model for the simulation of  CO2 injection into saline aquifers, Transport in Porous Media,119: 25–56 (2017).
  14. Arshadi, A. Z. Shahrak, M. Piri, G. A. Al-Muntasheri, and M. Sayed, The effect of deformation on two-phase flow through proppant-packed fractured shale samples: A micro-scale experimental investigation, Advances in Water Resources,105: 108-131 (2017).
  15. P. Tan and M. Piri, Heat of capillary condensation in nanopores: New insights from equation of state, Physical Chemistry Chemical Physics, 19: 5540-5549 (2017).
  16. Shahrak and M. Piri, Pore-scale network modeling of three-phase flow based on thermo-dynamically consistent threshold capillary pressures. II. Results, Transport in Porous Media, 116(3): 1139–1165 (2017).
  17. Shahrak and M. Piri, Pore-scale network modeling of three-phase flow based on thermo-dynamically consistent threshold capillary pressures. I. Cusp formation and collapse, Transport in Porous Media, 116(3):1093–1137 (2017).
  18. Javanbakht, G., Goual, L., (2016), “Impact of Surfactant Structure on Mobilization and Micellar Solubilization of NAPL in Porous Rocks”, Industrial & Engineering Chemistry Research, 55 (45), 11736–11746
  19. Lowry, E., Sedghi, M., Goual, L., (2016), “Novel Dispersant for Formation Damage Prevention in sc-CO2: A Molecular Dynamics Study”, Energy Fuels, 30 (9), 7187–7195.
  20. Lowry, E., Sedghi, M., Goual, L., (2016), “Molecular Simulation of NAPL Removal from Mineral Surfaces Using Microemulsions and Surfactants”, Colloids and Surfaces A. Physicochem. Eng. Aspects, 506, 485–494.
  21. Javanbakht, G. Goual, L., (2016), “Mobilization and Micellar Solubilization of NAPL Contaminants in Aquifer Rocks”, Journal of Contaminant Hydrology, 185–186, 61–73.
  22. Khishvand, A.H. Alizadeh, and M. Piri, In-situ characterization of wettability and pore-scale displacement during two- and three-phase flow in natural porous media, Advances in Water Resources, 97: 279-298 (2016).
  23. Khishvand, M. Akbarabadi, and M. Piri, Micro-scale experimental investigation of the effect of flow rate on trapping in sandstone and carbonate rock samples, Advances in Water Resources, 94: 379-399 (2016).
  24. Sedghi, M. Piri, and L. Goual, Atomistic molecular dynamics simulations of crude oil/brine displacement in calcite mesopores, Langmuir, 32(14): 3375-3384 (2016).
  25. Barsotti, S. P. Tan, S. Saraji, M. Piri, and J-H. Chen, A review on capillary condensation in nanoporous media: Implications for hydrocarbon recovery from tight reservoirs, Fuel, 184: 344-361 (2016).
  26. Tahmasebi, F. Javadpour, M. Sahimi, and M. Piri, Multiscale study for stochastic characterization of shale samples, Advances in Water Resources, 89: 91-103 (2016).
  27. Welch and M. Piri, Pore diameter effects on phase behavior of a gas condensate in graphitic one-and two-dimensional nanopores, Journal of Molecular Modeling, 22(1): 1-9, DOI: 10.1007/s00894- 015-2894-8 (2016).
  28. Li, M. Akbarabadi, Y. Zhang, and M. Piri, An integrated site characterization-to-optimization study for commercial-scale carbon dioxide storage, International Journal of Greenhouse Gas Control, 44: 74-87 (2016).
  29. Javanbakht, G., Sedghi, M., Welch, W, Goual. L., (2015), “Molecular Dynamics Simulations of CO2/Water/Quartz Interfacial Properties: Impact of CO2 Dissolution in Water”, Langmuir, 31, 21, 5812–
  30. Goual, L., Sedghi, M., (2015), “Role of Ion-Pair Interactions on Asphaltene Stabilization by Alkylbenzenesulfonic Acids”, Journal of Colloid and Interface Science, 440, 23–31.
  31. Akbarabadi, M. Borges, A. Jan, F. Pereira, and M. Piri, A Bayesian framework for the validation of models for subsurface flows: Synthetic experiments, Computational Geosciences, 19(6):1231- 1250, DOI: 10.1007/s10596-015-9538-z (2015).
  32. P. Tan and M. Piri, Equation-of-state modeling of associating-fluids phase equilibria in nanopores, Fluid Phase Equilibria, 405:  157-166  (2015).
  33. Welch and M. Piri, Molecular dynamics simulations of retrograde condensation in narrow oil- wet nanopores, Journal of Physical Chemistry C, 119(18): 10040-10047, DOI: 10.1021/jp511125e (2015).
  34. Saraji and M. Piri, The representative sample size in shale oil rocks and nano-scale characteization of transport properties, International Journal of Coal Geology, 146: 42-54 (2015).
  35. P.  Tan and M. Piri, Equation-of-state modeling of confined-fluid phase equilibria in nanopores, Fluid Phase Equilibria, 393:  48-63  (2015).
  36. Mirchi, S. Saraji, L. Goual, and M. Piri, Dynamic interfacial tension and wettability of shale in the presence of surfactants at reservoir conditions, Fuel, 148:127-138, DOI:10.1016/j.fuel.2015.01.077 (2015).
  37. Li, A. Akbarabadi, Z. T. Karpyn, M. Piri, and E. Bazilevskaya, Experimental investigation of carbon dioxide trapping due to capillary retention in saline aquifers, Geofluids, 15(4):563-576, DOI: 10.1111/gfl.12127 (2015).
  38. Aghaei and M. Piri, Direct pore-to-core up-scaling of displacement processes: Dynamic pore network modeling and experimentation, Journal of Hydrology, 522: 488-509 (2015).
  39. Akbarabadi and M. Piri, Co-sequestration of SO2 with supercritical CO2 in carbonates: An experimental study of capillary trapping, relative permeability, and capillary pressure, Advances in Water Resources, 77: 44-56 (2015).
  40. Goual, L., Sedghi, M., Mostowfi, F., McFarlane, R., Pomerantz, A., Saraji, S., Mullins, O., (2014), “Cluster of Asphaltene Nanoaggregates by DC-Conductivity and Centrifugation”. Energy Fuels, 28 (8), 5002–5013
  41. Goual L., Sedghi, M., Wang, X., Zhu, Z., (2014), “Asphaltene Aggregation and Impact of Alkylphenols”. Langmuir, 30, 5394–5403.
  42. Sedghi, M., Goual, L., (2014), “PC-SAFT Modeling of Asphaltene Phase Behavior in the Presence of Nonionic Dispersants”. Fluid Phase Equilibria, 369, 86–94
  43. Sedghi, M. Piri, and L. Goual, Molecular dynamics of wetting layer formation and forced water invasion in angular nanopores with mixed wettability, Journal of Chemical Physics, 141(19):194703. DOI: 10.1063/1.4901752 (2014).
  44. Heshmati and M. Piri, Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and non-circular cross sections, Langmuir, 30 (47):14151-14162 (2014).
  45. Rahunanthan, F. Furtado, D. Marchesin, and M. Piri, Hysteretic enhancement of carbon dioxide trapping in deep saline aquifers, Computational Geosciences, 18 (6): 899-912, DOI:10.1007/s10596- 014-9433-z (2014).
  46. Alizadeh, M. Khishvand, M. Ioannidis, and M. Piri, Multi-scale experimental study of carbonated water injection: An effective process for mobilization and recovery of trapped oil, Fuel, 132: 219-235 (2014).
  47. Alizadeh and M. Piri, Three-phase flow in porous media: a review of experimental studies on relative permeability, Reviews of Geophysics, 52 (3): 468-521, DOI: 10.1002/2013RG000433 (2014).
  48. Saraji, M. Piri, and L. Goual, The effects of SO2 contamination, brine salinity, pressure, and temperature on dynamic contact angles and interfacial tension of sc-CO2/brine/quartz systems, International Journal of Greenhouse Gas Control, 28: 147-155 (2014).
  49. Alizadeh and M. Piri, The effect of saturation history on three-phase relative permeability: an experimental study, Water Resources Research, 50: 1636-1664, DOI:10.1002/2013WR014914 (2014).
  50. Ovaysi and M. Piri, Pore-space alteration induced by brine acidification in subsurface geologic formations, Water Resources Research, 50(1):  440-452, DOI:10.1002/2013WR014289 (2014).
  51. Sedghi, M., Goual, L., Welch, W., Kubelka, J. (2013), “Effect of Asphaltene Structure on Association and Aggregation Using Molecular Dynamics”. Journal of Physical Chemistry B, 117, 5765−5776.
  52. Tan and M. Piri, Modeling the solubility of nitrogen dioxide in water using perturbed-chain statistical associating fluid theory, Industrial & Engineering Chemistry Research, 52 (45): 16032- 16043 (2013).
  53. P. Tan, Y. Yao, and M. Piri, Modeling the solubility of SO2 + CO2 mixtures in brine at elevated pressures and temperatures, Industrial & Engineering Chemistry Research, 52 (31): 10864-10872, DOI: 10.1021/ie4017557 (2013).
  54. Saraji, L. Goual, and M. Piri, Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434: 260-267 (2013).
  55. Saraji, L. Goual, M. Piri, and H. Plancher, Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions, Langmuir, 29(23): 6856-6866, DOI: 10.1021/la3050863 (2013).
  56. Ovaysi and M. Piri, Pore-scale dissolution of CO2 + SO2 in deep saline aquifers, International Journal of Greenhouse Gas Control, 15: 119-133 (2013).
  57. Akbarabadi and M. Piri, Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: An experimental study at reservoir conditions, Advances in Water Resources, 52: 190-206 (2013).
  58. Mullins, O., Sabbah, H., Eyssautier, J., Pomerantz, A., Barre, L., Andrews, B., Ruiz-Morales, Y., Mostowfi, M., McFarlane, R., Goual, L., Lepkowicz, R., Cooper, T., Orbulescu, J., Leblanc, R., Edwards, J., Zare, R., (2012), “Advances in Asphaltene Science and the Yen-Mullins Model”. Energy & Fuels, 26, 3986–
  59. Wang, X., Goual, L., Colberg, P., (2012), “Characterization and Treatment of Dissolved Organic Matter from Oilfield Produced Waters”. Journal of Hazardous Materials, 217–218, 164–170.
  60. Ovaysi and M. Piri, Multi-GPU acceleration of direct pore-scale modeling of fluid flow in natural porous media, Computer Physics Communications, 183 (9): 1890-1898 (2012).
  61. Goual, L., Sedghi, M., Zeng, H., Mostowfi, F., McFarlane, R., Mullins, O., (2011), “On the Formation and Properties of Asphaltene Nanoaggregates and Clusters by DC-Conductivity and Centrifugation”. Fuel, 90, 2480–2490.
  62. Landry, Z. T. Karpyn, and M. Piri, Pore-scale analysis of trapped immiscible fluid structures and fluid interfacial areas in oil-wet and water-wet bead packs, Geofluids, 11: 209-227 (2011).
  63. Ovaysi and M. Piri, Pore-scale modeling of dispersion in disordered porous media, Journal of Contaminant Hydrology, 124 (1-4): 68-81 (2011).
  64. Goual, L., Abudu, A., (2010), “Predicting the Adsorption of Asphaltenes from their Electrical Conductivity”. Energy & Fuels, 14(1), 469-474.
  65. Sedghi, M., Goual, L., (2010), “Role of Resins on Asphaltene Stability”. Energy & Fuels, 24, 2275-2280.
  66. Merino-Garcia, D., Shaw, J., Carrier, H., Yarranton, H., Goual, L., (2010), “The Petrophase 2009 Panel Discussion on Standardization of Petroleum Fractions”. Energy & Fuels, 24, 2175-2177.
  67. Saraji, L. Goual, and M. Piri, Adsorption of Asphaltenes in porous media under flow conditions, Energy & Fuels, 24(11), 6009-6017 : DOI:10.1021/ef100881k (2010).
  68. Ovaysi and M. Piri, Direct pore-level modeling of incompressible fluid flow in porous media, Journal of Computational Physics, 229 (19):  7456-7476   (2010).
  69. Douglas, F. Furtado, V. Ginting, M. Mendes, F. Pereira, and M. Piri, On the development of a high performance tool for the simulation of CO2 injection into deep saline aquifers, Rocky Mountain Geology, 45(2): 151-161, (2010).
  70. T. Karpyn, M. Piri, and G. Singh, Experimental investigation of trapped oil clusters in a water- wet bead pack using x-ray microtomography, Water Resources Research, 46(4), W04510, DOI:10.1029/2008WR007539 (2010).
  71. Abudu, A., Goual, L., (2009), “Adsorption of Crude Oil on Surfaces using Quartz Crystal Microbalance under Flow Conditions”. Energy & Fuels, 23(3), 1237-1248.
  72. Goual, L., (2009), “Impedance Spectroscopy of Petroleum Fluids at Low Frequency”. Energy & Fuels, 23(4), 2090-2094.
  73. Raeesi and M. Piri, The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: A pore-scale network modeling approach, Journal of Hydrology, 376(3-4): 337-352, DOI:10.1016/j.jhydrol.2009.07.060 (2009).
  74. Goual, L., Schabron, J.F., Turner, T.F., Towler, B.F., (2008), “On-column Separation of Wax and Asphaltenes in Petroleum Fluids”, Energy & Fuels,22(6), 4019-4028.
  75. S. Suicmez, M. Piri, and M. J. Blunt, Effects of wettability on hydrocarbon trapping, Advances in Water Resources31 (3): 503-512,(2008).
  76. I. J. Van Dijke, M. Piri, Introduction to Special Section on Modeling of Pore-Scale Processes, Water Resources Research43, W12S01, doi:10.1029/2007WR006332 (2007).
  77. I. J. Van Dijke, M. Piri, J. O. Helland, K. S. Sorbie, M. J. Blunt, and S. M. Skjæveland, Criteria for three-fluid configurations including layers in a pore with non-uniform wettability, Water Resources Research43, W12S05, doi:10.1029/2006WR005761 (2007).
  78. Piri and Z. T. Karpyn, Prediction of Fluid Occupancy in Fractures using Network Modeling and X-ray Microtomography. Part 2: Results, Physical Review E 76016316 doi:10.1103/PhysRevE.76.016316 (2007).
  79. T. Karpyn and M. Piri, Prediction of Fluid Occupancy in Fractures using Network Modeling and X-ray Microtomography. Part 1: Data Conditioning and Model Description, Physical Review E 76016315 doi:10.1103/PhysRevE.76.016315 (2007).
  80. S. Suicmez, M. Piri, and M. J. Blunt, Pore-scale simulation of water alternate gas injection, Transport in Porous Media, 66: 259-286, doi:10.1007/s11242-006-0017-9 (2007).
  81. Goual, L., Horvath-Szabo, G., Masliyah, J.H., Xu, Z., (2006), “Characterization of the Charge Carriers in Bitumen”. Energy & Fuels, 20 (5), 2099-2108.
  82. C. Fuller, J. H. Prévost and M. Piri, Three-phase equilibrium and partitioning calculations for CO2 sequestration in saline aquifers, Journal of Geophysical Research – Solid Earth111, B06207, doi:10.1029/2005JB003618 (2006).
  83. Goual, L., Horvath-Szabo, G., Masliyah, J.H., Xu, Z., (2005), “Adsorption of Bituminous Components at Oil/Water Interface by Quartz Crystal Microbalance: Implications to the Stability of Water-in-Oil Emulsions”. Langmuir, 21(18), 8278-8289.
  84. Piri and M. J. Blunt, Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Physical Review E, 71 026301 doi:10.1103/PhysRevE.71.026301 (2005).
  85. Piri and M. J. Blunt, Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results. PPhysical Review E, 71 026302 doi:10.1103/PhysRevE.71.026302 (2005).
  86. H. Valvatne, M. Piri, X. Lopez, and M. J. Blunt, Predictive pore-scale modeling of single and multiphase flow, Transport in Porous Media, 58 (1-2): 23-41, doi: 10.1007/s11242-004-5468-2 (2005).
  87. Goual, L., Firoozabadi, A., (2004), “Effect of Resins and DBSA on Asphaltene Precipitation from Petroleum Fluids”. AIChE Journal, 50(2), 470-479.
  88. Piri, and M. J. Blunt, Three-phase threshold capillary pressures in noncircular capillary tubes with different wettabilities including contact angle hysteresis, Physical Review E, 70 061603 doi:10.1103/PhysRevE.70.061603 (2004).
  89. Goual, L., Firoozabadi, A., (2002), “Measuring Asphaltenes and Resins, and Dipole Moment in Petroleum Fluids”. AIChE Journal, 48(11), 2646-2663.
  90. M. J. Blunt, M. D. Jackson, M. Piri, and P. H. Valvatne, Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow, Advances in Water Resources, 25 (8-12) 1069-1089 (2002).
  91. Nichita, D.V., Goual, L., Firoozabadi, A., (2001), “Wax Precipitation in Gas Condensate Mixtures”. SPE Production & Facilities, 16(4), 250-259.

CONFERENCE PAPERS, PRESENTATIONS, AND POSTERS

  1. Zolfaghari Shahrak, M. Piri, and V. S. Suicmez, Thermodynamically Consistent Threshold Capillary Pressures for Displacements in Mixed-wet Irregular Capillary Tubes, Computational Methods in Water Resources XVII International Conference (CMWR XVII), San Francisco, USA, July 6-10
    (2008).
  2. Raeesi and M. Piri, Three-dimensional mixed-wet random pore-scale network modeling of relationships between interfacial area, capillary pressure and saturation, Computational Methods in Water Resources XVII International Conference (CMWR XVII), San Francisco, USA, July 6-10 (2008).
  3. S. Suicmez, M. Piri, and M. J. Blunt, Surprising Trends on Trapped Hydrocarbon Saturation with Wettability, Society of Core Analysts, 21st International Symposium of the Society of Core Analysts, Calgary, Canada, September 10-14, Poster Number SCA2007-51, (2007).
  4. Ovaysi and M. Piri, Dynamic pore-level modeling of multi-phase displacement processes in non-circular capillary tubes using a particle-based method, 60th Annual Meeting of the APS Division of Fluid Dynamics, Salt Lake City, Utah, November 18-20, (2007).
  5. Alamdari, T. LaForce and M. Piri, Impact of Self-Consistent Physically-Based Three-Phase Relative Permeability on Oil Recovery by Secondary Gas-flooding, Paper SPE 110507, Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, California, November 11-14
    (2007).
  6. T. Karpyn, and M. Piri, Prediction of fluid occupancy in fractures using network modeling and X-ray microtomography, AGU Fall Meeting, San Francisco, CA, December 11-15 (2006).
  7. I. J. Van Dijke, M. Piri, K. S. Sorbie, and M. J. Blunt, Criterion for three-fluid configurations including layers in a pore with non-uniform wettability, Proceedings of the Computational Methods in Water Resources XVI International Conference (CMWR XVI), Copenhagen, Denmark, June 19-
    22 (2006).
  8. S. Suicmez, M. Piri, and M. J. Blunt, Pore-scale simulation of water alternate gas injection, Proceedings of the Computational Methods in Water Resources XVI International Conference (CMWR XVI), Copenhagen, Denmark, June 19-22 (2006).
  9. S. Suicmez, M. Piri, and M. J. Blunt, Pore-scale simulation of water alternate gas injection, Pore Scale Modeling of Three-Phase WAG Injection: Prediction of Relative Permeabilities and Trapping for Different Displacement Cycles, Paper SPE 95594, Proceedings of the SPE/DOE Symposium on Improved Oil Recovery held in Tulsa, OK, USA, April 22-26 (2006).
  10. J. Blunt, B. Bijeljic, H. Dong, M. Jackson, X. Lopez, H. Okabe, M. Piri, and P. Valvatne, Predictive pore-scale modeling, Proceedings of DEVEX, Aberdeen, UK, May 18-19 (2005).
  11. Piri, J. H. Prévost and R. Fuller, Carbon Dioxide sequestration in saline aquifers: evaporation, precipitation and compressibility effects, Proceedings of the Fourth Annual Conference on Carbon Capture & Sequestration, WA, May 2-5 (2005).
  12. Piri and M. J. Blunt, Pore-scale modeling of three-phase flow in mixed-wet systems, Paper SPE 77726, Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, September 29-October 2 (2002).